
Virtualization and Containerized Development
Workspaces

Abstract​— ​Virtualization is the process where we can
divide and distribute a machine’s resources among different
environments, with an aim of increased efficiency with
mostly shared hardware components. Virtual Machines
(VMs) when talking about abstraction with isolating an
entire machine powered by hypervisors, and Containers
when specific applications with all its dependencies are
isolated using OS-level virtualization, are two major
virtualization techniques.

Virtual Machines which use hypervisor-based virtualization
are made up of user space and boot up their own kernel.
This is supported by hypervisor which allows multiple
Operating systems to share a single host.
With increased priority for privacy, complete isolation and
abstraction from the server Virtual Machines are used.

Containers which use Operating System level Virtualization
and are isolated from one another and bundle their own
software, libraries and configuration files. Containers use
fewer resources than virtual machines as they run on a
single OS kernel.

Containerized Dev Workspaces are widely used for
deploying and running distributed applications or software
without launching an entire Virtual machine.
Containerized Dev Workspaces are packages of all the
required software, environment variables, and all other
dependencies required to properly run the application on
which developers are working, which results in eased
deployment, increased efficiency and productivity.

Docker uses the OS-Level virtualization to deliver software
in packages which are called containers. It is a set of
Platform as a Service (PaaS) products.

In this paper we will discuss virtualization, creating
dockerized images for containerized dev workspaces and its
significance in DevOps. We highlight the performance of
application containers. Containers are replacing VMs all
over the world and are expected to play a very significant
role in microservice applications.

Keywords— Containers, Docker, Hypervisor, Virtualization,
Ansible, Container dev workspaces, DevOps.

I. I​NTRODUCTION

Virtualization is the root concept behind virtual machines and
containers. Virtual machines are based on hypervisor based
virtualization and containers use OS-level virtualization.

In Hypervisor based virtualization there is a layer between

Virtual Machine and underlying host hardware. Hypervisor
also known as Virtual Machine Monitor (VMM). Hypervisor
is a software which allows to run multiple VMs per host
hardware.
A virtual Machine is created by isolating the essential
resources like disk, memory, networking and CPU. VMs
creates their own kernel above the base OS and only one OS
operates at a time. Hyper-V and VMware ESX server are
hypervisors for windows and Linux kernel respectively.

Mainly hypervisors can be classified into two types, i.e.,
Type1 hypervisor and type2 hypervisor.
In type1, the hypervisor layer is placed on direct hardware, on
CPU, disk, RAM, with no software or OS in between. VMs
are then emulated above the hypervisor. That's why they are
also termed as metal/ native hypervisors Examples of type1
hypervisors are KVM and VMware ESXi. (as shown in Fig. 1)

Type2 hypervisors layer is placed on the base OS and the VMs
are then emulated over the hypervisors, these VMs reserve
their physical resources and run their own Guest OS. They are
also termed as hosted hypervisors. (as shown in Fig. 2).
VMs serve as Infrastructure as a Service (IaaS).

Container based virtualization i.e. OS-level virtualization
supports encapsulation of operating systems and their
dependencies into packages which are managed by the base
OS kernel, these packages are called containers. The OS-level
Virtualization mechanism is to run multiple isolated systems
(containers) on a single OS kernel.

Mainly we can classify the containers into system containers
and application containers. System containers encapsulate a
complete system and support each type of system commands.
LXC, Linux containers are system containers.
Application containers packages complete applications,
docker-hub has one of the largest collections of application

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Pratyush Paliwal
IIIT Bhubaneswar,

Bhubaneswar, India
Email: b417026@iiit-bh.ac.in

containers, with containers for various software
applications.
These serve as Platform as a Service (PaaS).

Fig. 1. (Type1 Hypervisor)

Fig. 2. (Type2 Hypervisor)

Containerized Dev Workspaces are containers that packages
the software and their dependencies required for their proper
functioning, all these software are installed with their
specific versions required for particular development
workspace. These packages when built provide shareable
docker containers which can be shared among all the
developers of the team, which enables them to work in the
same development workspace. It eliminates the errors
introduced due to version mismatch and other problems due
to manual environment settings.

II. Docker

Docker is a set of Platform as a Service (PaaS), container
technology which allows to package software applications
with their dependencies and also allows to distribute it among
others. Docker is the flag bearer of container movement. It is
open source written in Go language. Docker API had fifteen
revisions in the past one and a half years and developers and
the open source community are still working on it. Docker
utilizes LXC containers, fitting these container environments
is difficult as they're terribly low, and here docker offers a high
level tool with several functionings making it easy.
Docker containers share the underline kernel, Docker can run
any particular OS distributions containers on top of it as long
as they all share the same kernel. Shown in Fig. 3.
Windows based containers can not run on a docker host based
on a Linux kernel. For running that we require a docker host
on windows server.

Fig. 3. (Docker Container Architecture)

Docker Software Components:
Software: ​The ​Docker daemon manages docker containers
and handles container objects. It listens to the requests from
Docker engine API.
Docker CLI which is a docker client program gives a
command line interface which allows users to interact with
Docker daemons.

Objects: assembling applications in docker is main functions,
these objects are​ images, containers and services.
Docker images are read-only templates, which are used as an
original document and photocopy is used as containers of that
particular image.

Docker Containers are packages created by docker images
that can be managed by API or CLI.
Docker Services provides a platform for containers to scale
across various docker daemons.

Registries: ​collection of docker images is Docker registry.
Clients can use these registries for downloading or
uploading the images which have been built. DockerHub is
the default Docker registry. Docker cloud is another Docker
registry.

Docker helps in standardizing the environment by ensuring
consistency across multiple development and release cycles.
It allows the same application software container from
build, to test, to production, throughout the pipeline.
Docker highly supports Digital transformation.
Microservices based containerized application development
is one of the key factors of digital transformation. This helps
in reducing the complexity of IT systems in the organization
by providing the ability to build and deliver quickly.

Tech organizations like google, AWS, Intel, Tesla use
container technology and docker. Google created
Kubernetes which is a container orchestration tool, google
provides numerous container services. This year Intel
launched a new version of “clear containers” which is a tool
to improve scalability of applications. This tool runs on
Kubernetes.

With the increased need for automation in each field, docker
encapsulates the automated orchestration of workloads,
which does not leave docker as a standalone technology.
The global application container market which includes
container monitoring, Data management, networking,
security and orchestration platforms, is growing with an
Compound Annual Growth Rate (CAGR) of 32.9%.
This is due to the fact that various container orchestration
services and container security services are deployed in
enterprises globally.

 ​III. Virtual Machines and Containers

With basic understanding of Virtual Machines, containers
and their architectures, various research and development
are analyzed in their comparison, in order to determine
which one is better to use at a specified application area.
These comparisons are done on Ubuntu 16.04. Devstack
which is a Openstack dev environment, is used to create
VM. Docker is used for container hosting. For comparisons
based on HTTP requests, apache web server is used.

We focus on getting results which will suggest more
preferable virtualization techniques, docker or VMs, on the
basis of performance, scalability and user space isolation for
the purpose of hosting applications.

RAM usage (idle state) : Virtual machine occupies way
more RAM (approx 500 MBs), as compared to containers
(approx 5 MBs).
Disk Usage (post creation) : Virtual machine uses way more
disk space (approx 950 MBs), as compared to containers
(only 0.5 MBs).
Performance : Both VMs and Containers showed
equivalent response for executed number of operations per
unit time elapsed, with container executing more number of
operations in long run.
HTTP request handling : VMs handled slightly more
number of HTTP requests as compared to containers on the
number of requests served as a time measuring basis.
But VMs simultaneously uses more CPU while handling the
requests as compared to containers. In case of RAM usage
while handling HTTP requests, containers performance is
way better than VMs, RAM usage goes up to 900 MBs
while handling requests in case of VMs, and only upto 90
MBs RAM usage in case of containers, while handling the
same number of requests.
File Transfer speed : Containers perform way better than
containers in case of speed of file transfer through the
network. Speed of file transfer in VMs starts with 150 MB/s
and constantly drops to around 100 MB/s with increasing
time in seconds (0-10s). While speed in containers starts at
around 170 MB/s and drops to around 150 MB/s in the same
time frame (0-10s) as used for VMs.
Scalability : when considering heavy loads, i.e. request
handling at increasing number of connections VMs perform
slightly better than containers, but at a cost of significant
high CPU and RAM usage. Also after some timespan
container performance tends to be equivalent to that of
virtual machines with a very less comparative CPU and
RAM usage.

Virtual Machines are seen as a single process by the
underlying OS even there are various active processes
executing simultaneously in VMs. This situation of not
being aware of each other's processes creates almost
complete abstraction between host OS and Virtual Machine.
This supports the results we got for the above observations.

This justifies the use of a large number of containers on the
host physical server as compared to using the VMs for the
processes. If privacy is considered a deciding factor, then
VM gets a higher chance of usage due to above mentioned

complete abstraction and isolation of the process details
between the host and VM.
Containers use fewer resources than VM, and are faster in
network supported file transfer, on the other hand for
handling a higher number of HTTP requests in small
timeframe VMs are better.

 ​ IV. Containerized Dev Workspaces in DevOps

DevOps is a word made by Development and Operations,
with the help of containerized approach toward software
development, communication gap and lack of information
between teams in an organization is eliminated, DevOps
combines development and operations activities with a
target of reducing time for development life cycle,
supporting agile development with continuous delivery at
the same time not compromising on software quality.

DevOps reduces the uncertainty due to version mismatch of
software, different PC settings, slightly different
environment settings, wrong installation of dependencies of
a software application, containerized way of development
ensures that the application package in container runs same
as it is developed in developer’s system, on any system,
without any installation, or environment setting. Docker
containers run the same on each machine irrespective of
which server or which machine they are running on.

Containerized Development workspaces reduce the time
taken to set up development environments and dependency
on local desktop resources for development.

Ansible can be used for creation of dev workspaces using
docker, ansible is mostly used for automation of installation
of different software packages required for given
development workspace.
Ansible playbook is a YAML file, which is specified in the
docker file, it tells the processor what to do, with step wise
instructions for installations. These installations are
automated and eliminate the need for manual package
installation in container workspace.
Dockerfile contains other docker image specifications with
ansible playbook, docker engine uses Dockerfile to build
required docker images. With the help of docker image we
can create multiple instances called docker containers.

Containerized dev workspaces in organization results in cost
reduction, digital transformation, standardization of
environment and increased productivity and easy
management.

 V. Conclusion

This paper talks about virtualization, two main approaches,
hypervisor based and OS-level virtualization, Virtual
Machines, containers and their comparison research based on
various parameters, Docker and its growing use, containerized
dev workspaces in organizations and significant role in
DevOps.
Docker is still growing rapidly, Google's Kubernetes is the
latest docker orchestration technology, it is open source and
has a large contribution in container administration and
management.

Performance comparison on the basis of different aspects
between VM and Containers is shown in this paper. Container
leaves behind virtual machines in performance and scalability,
which makes containers more appropriate for application
deployment as compared to using entire virtual machines for
application deployment. Certainly, there are also some cases
when virtual machines are preferred instead of containers; i.e.,
cases where privacy is of very high priority and the data
application software deals with is confidential and critical to
business.

Nested virtualization is another field of virtualization which is,
virtualization of a system inside a virtual machine, that is,
virtual machine on a Virtual machine.
Running a container inside a virtual machine will provide the
performance of the containers with added benefit of privacy
and security within Virtual machines. Large technological
firms like Google and Amazon use containers inside VM,
nested virtualization technology. There are still vast areas to
explore in this field.

 References

[1] Docker. URL ​https://www.docker.io/

[2] Virtual Machines vs Containers, ​Vestman, S., 2020.
Cloud Application Platform - Virtualization Vs
Containerization : A Comparison Between Application
Containers And Virtual Machines​. [online] DIVA.
Available at:
<https://www.diva-portal.org/smash/record.jsf?pid=diva2
%3A1112069&dswid=-8369> [Accessed 9 December
2020].

[3] N. G. Bachiega, P. S. L. Souza, S. M. Bruschi and S. d.
R. S. de Souza, "Container-Based Performance
Evaluation: A Survey and Challenges," 2018 IEEE
International Conference on Cloud Engineering (IC2E),
Orlando, FL, 2018, pp. 398-403, doi:
10.1109/IC2E.2018.00075.

https://www.docker.io/

[4] S. Singh and N. Singh, "Containers & Docker:
Emerging roles & future of Cloud technology," 2016 2nd
International Conference on Applied and Theoretical
Computing and Communication Technology (iCATccT),
Bangalore, 2016, pp. 804-807, doi:
10.1109/ICATCCT.2016.7912109.

[5] R. K. Barik, R. K. Lenka, K. R. Rao and D. Ghose,
"Performance analysis of virtual machines and containers
in cloud computing," 2016 International Conference on
Computing, Communication and Automation (ICCCA),
Noida, 2016, pp. 1204-1210, doi:
10.1109/CCAA.2016.7813925.

